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Abstract
Although the role of complete gene inactivation by two loss-of-function mutations inherited in trans is well-established in
recessive Mendelian diseases, we have not yet explored how such gene knockouts (KOs) could influence complex human
phenotypes. Here, we developed a statistical framework to test the association between gene KOs and quantitative human
traits. Our method is flexible, publicly available, and compatible with common genotype format files (e.g. PLINK and vcf). We
characterized gene KOs in 4498 participants from the NHLBI Exome Sequence Project (ESP) sequenced at high coverage (>100×),
1976 French Canadians from the Montreal Heart Institute Biobank sequenced at low coverage (5.7×), and >100 000 participants
from the Genetic Investigation of ANthropometric Traits (GIANT) Consortium genotyped on an exome array. We tested
associations between gene KOs and three anthropometric traits: body mass index (BMI), height and BMI-adjusted waist-to-hip
ratio (WHR). Despite our large sample size and multiple datasets available, we could not detect robust associations between
specific gene KOs and quantitative anthropometric traits. Our results highlight several limitations and challenges for future
gene KO studies in humans, in particular when there is no prior knowledge on the phenotypes that might be affected by the
tested gene KOs. They also suggest that gene KOs identified with current DNA sequencing methodologies probably do not
strongly influence normal variation in BMI, height, and WHR in the general human population.

Introduction
The identification of complete loss-of-function (LoF) alleles (i.e.
genetic null or amorphic alleles) is a powerful strategy to charac-
terize gene functions through random (e.g. chemicalmutagenesis)
or targeted [e.g. knockout (KO) methodology in the mouse, RNAi]
genetic experiments. In contrast to model organisms, humans
are not amenable to such genetic manipulations. Yet, there is tre-
mendous biomedical interest in understanding how the complete
disruption of both copies of a genemay impact human biology (1).
Our complex physiology, interactions with our environment, and
gene redundancy within our genome are only few of the reasons
highlighting the importance of describing the phenotypic conse-
quences of gene inactivation in humans. From a drug develop-
ment perspective, the identification of humans with gene KOs
also offers naturally occurring genetic experiments to assess the
potential pleiotropic effects of candidate target genes (2).

Mendelian diseases, such as sickle cell anemia [MIM 603903]
and cystic fibrosis [MIM 219700], offer an entry point into the
study of gene functions in humans. Indeed, the study of these
conditions continues to yield important insights into human
biology in health and disease (3). But only a limited number of
genes have been implicated in Mendelian diseases: as of October
13, 2015, there were 4651 genes in the Online Mendelian Inherit-
ance in Man (OMIM) database with phenotype-causing muta-
tions. Furthermore, these mutations are often rare such that it
is difficult to assemble sufficiently large cohorts of patients to
study their pleiotropic effects. Gene KOs can have strong pheno-
typic effects on anthropometric traits in the context ofMendelian
disorders or syndromes, as evident by mutations causing early-
onset morbid obesity (PCSK1, LEPR) or dwarfism (GH1 GHR, ATR)
(4–6). These mutations are rare (often private) and unlikely to
be involved in anthropometric trait variation in the general popu-
lation. However, the possibility that gene KOs of more subtle ef-
fect might influence normal variation in anthropometric traits
remains to be investigated.

Large-scale whole-exome and -genome sequencing projects
are beginning to systematically catalogue coding genetic

variation in the human genome, including predicted LoF variants
(7–11). On average, there are ∼100–200 LoF variants per individ-
ual, resulting in ∼20 genes that are inactivated through homozy-
gosity or compound heterozygosity (12). These numbers include
mostly common variants, which are more likely to be phenotyp-
ically neutral given the effect of purifying selection (13). Limiting
to variants with a minor allele frequency (MAF) <0.5%, the 1000
Genomes Project estimated that there are 10–20 LoF variants
per individual (8). LoF variants are usually defined as variants
that truncate protein sequences [nonsense and frameshift inser-
tion-deletion (indel)] or that abrogate splice sites or stop codons
(stop-loss) (12). Using this definition of LoF variant, and limiting
their analyses to variants with a MAF < 2%, Sulem et al. found
that ∼8% of 104 220 Icelanders carry at least one complete gene
KO, and that most gene KOs are seen in <5 individuals (14).

Recently, several studies have explored the link between gene
KOs and human complex phenotypes, such as chronic diseases
(12,15–17) and autism (18). As mentioned above, it is well-estab-
lished that rare gene inactivation can cause extreme anthropo-
metric phenotypes in several human recessive disorders. The
goal of our study is to extend this observation and determine
whether gene KOs of modest phenotypic effect also contribute
to anthropometric trait variation in the general human popula-
tion. We developed a statistical method to test for association
between predicted gene KOs and quantitative human pheno-
types and characterized the distribution of predicted gene
KOs in 2772 European Americans and 1726 African Americans
from the National Heart, Lung, and Blood Institute (NHLBI)
Exome Sequence Project (ESP). We then applied our method to
detect associations between gene KOs and three quantitative
anthropometric traits [body mass index (BMI), adult height, and
BMI-adjusted waist-to-hip ratio (WHR)] using high coverage
whole-exome sequence (WES) data from 4498 ESP participants,
low coverage whole-genome sequence (WGS) data from 1969
French Canadians, and >100 000 participants from the Genetic
Investigation of ANthropometric Traits (GIANT) Consortium
genotyped on an exome array.
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Results
Number and distribution of predicted gene KOs in ESP

We identified 18 137 and 21 935 LoF variants in 1726 African
Americans and 2772 European Americans from ESP, respective-
ly (Table 1 and Supplementary Material, Table S1). These LoF
variants included protein truncating (nonsense, frameshift
indel), stop-loss and splice site variants. On average, we
found 65 and 39 rare or low-frequency LoF variants (MAF < 5%)
per African-American and European-American ESP participant,
respectively (Table 1). These numbers are higher than some
of the previous estimates (12,16,18), mostly because we in-
cluded frameshift indels in our analyses. When excluding
frameshift indels, we found on average 26 and 16 LoF variants
with MAF < 5% per ESP African American and European Ameri-
can, respectively. Descriptive statistics on the number of LoF
variants in ESP after excluding frameshift indels are available
in SupplementaryMaterial, Table S2.We screened the ESP data-
set for individuals who are homozygous or compound hetero-
zygous for LoF variants, and are therefore predicted KOs for a
given gene. To detect compound heterozygosity, we used
phased genotype information generated with the software Bea-
gle to distinguish between LoF variants inherited in cis or trans
(Table 1) (19). The identification of LoF variants depends on the
gene annotation used. To address this concern, we re-analyzed
the ESPWES data using the GENCODE basic transcripts annota-
tion instead of RefSeq, and only considered variants that fell
within all transcripts for a given gene. We obtained very similar
association results between the two annotation software
(Supplementary Material, Fig. S1). We present below results
generated with the RefSeq annotation.

Common LoF variants are responsible formost predicted gene
KOs (Fig. 1, and Supplementary Material, Fig. S2 for distributions
without frameshift indels). For instance, in ESP African Amer-
icans, we found on average 25.9 and 2.5 predicted gene KOs per
individual when analyzing all or rare/low-frequency LoF var-
iants, respectively (Table 1). The corresponding numbers in Euro-
pean Americans are 23.2 and 1.1 for all and rare/low-frequency
LoF variants (Table 1). While this article was under review, the
Exome Aggregation Consortium (ExAC) reported an average of
35 homozygous protein-truncating variants per individual. This
number is higher than the average number of homozygous LoF
variants that we found in ESP (∼21–23/participant, Table 1) (20).
This difference might simply reflect increased power in ExAC to
discover raremutations owing to its larger sample size (N = 60 706
versus N = 4498 for ESP). Because common LoF are more likely to
be phenotypically neutral (13), we focused all subsequent ana-
lyses on LoF with MAF < 5% within ethnic group or sub-study.
In the ESP dataset, we found 2071 and 1433 genes with both al-
leles inactivated by such LoF variants in at least one African
American or one European American, respectively (Table 1).
The higher number of predicted gene KOs in African Americans
has been previously observed and is consistent with increased
genetic diversity in African-ancestry populations (12). Overall,
very few individuals shared the same gene KOs, most of them
being found in only one individual (Fig. 1). Homozygosity of LoF
variants is responsible for the majority of these KO events as
we only found (after taking phase information into account) com-
pound heterozygous individuals for ∼8% of the genes with at
least one gene KO (Table 1). Stop-loss variants might not be as
detrimental as other categories of LoF variants, but they are im-
plicated in <0.9% of all gene KOs identified in ESP.

Table 1. Number and frequency of predicted gene knockouts (KO) in 1727 African Americans and 2772 European Americans from the NHLBI
Exome Sequence Project (ESP)

Variants/
individuals

Variants/
gene

Not phased Phased
Gene KOs/
individuals

Number of
KO genes

Gene KOs/
individuals

Number of
KO genes

African
Americans

All LoF
(N = 18 137)

237 0.92 33.7 2530 25.9 2429

Homozygotes 23.2 2384 23.2 2384
Compound

heterozygotes
10.4 601 2.6 334

Rare LoF
(N = 17 446)

65 0.89 4.2 2174 2.5 2071

Homozygotes 2.3 2028 2.3 2028
Compound

heterozygotes
1.9 381 0.2 155

European
Americans

All LoF
(N = 21 935)

197 1.12 28.8 1844 23.2 1741

Homozygotes 21.3 1694 21.3 1694
Compound

heterozygotes
7.6 487 1.9 247

Rare LoF
(N = 21 351)

39 1.09 1.8 1538 1.1 1433

Homozygotes 1 1390 1.01 1390
Compound

heterozygotes
0.8 318 0.09 124

For this loss-of-function (LoF) variant analysis, we consider autosomal nonsense, stop-loss and splice site variants, as well as frameshift insertion-deletions (indels). Rare
LoF variants have a minor allele frequency <5%. In the absence of phasing information, we assume that rare LoF are inherited in trans. As expected, considering phased
genotype information significantly impacts the number of gene KOs that we can detect due to compound heterozygosity.
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Predicted gene KO associated with anthropometric traits
in ESP

We tested our newly developed method (Fig. 2) on three an-
thropometric traits (BMI, height, and WHR) that are available in
a large number of ESP participants. We stratified our analyses
by ethnicity and meta-analyzed association results (Fig. 3). As-
suming that most genes are independent and given the number
of genes for which we could find at least one predicted knocked
out individual, we used the following Bonferroni-corrected sig-
nificance threshold to declare significance: α = 2 × 10−5. No single
genes reached this significance threshold for any of the three
tested anthropometric traits aftermeta-analysis (Supplementary
Material, Table S3).

To increase statistical power, we attempted to replicate genes
with a nominal P < 0.05 in the ESP dataset using the WGS data
from the Montreal Heart Institute (MHI) Biobank (N = 1976). We
limited our analysis to genes with at least two KO individuals. Al-
though the MHI Biobank dataset results from low-pass WGS, the
numberof identified LoF variants and geneKOswas similar to the
number observed in ESP (SupplementaryMaterial, Table S1), sug-
gesting that the data are sufficiently comprehensive to support

these analyses. We found that 30–40% of gene KOs in ESP were
also knocked out in the MHI Biobank, highlighting the challenge
to replicate such studies in humans. This might particularly be
true for gene KOs observed only in ESP African Americans given
that the MHI Biobank includes individuals of European ancestry.
We combined the ESP andMHI Biobank results but we did not ob-
serve any significant associations with quantitative anthropo-
metric traits (Supplementary Material, Table S3). We report
results with a meta-analysis P < 0.005 in Table 2. Themost prom-
ising gene KO association that we found is between PKHD1L1 and
lower BMI: we found 20 KO individuals for this gene who have on
average a BMI that is 0.8 standard deviation (SD) below the popu-
lationmean (corresponding to ∼−3.6 kg/m2). PKHD1L1may play a
role in immunity (21).

While examining the top candidate genes, we noticed that
PKHD1L1 is a large gene (78 exons, coding sequence is ∼14
kilobases), raising the possibility that our method could favor
longer genes. In the ESP dataset, we found, as expected, that
the number of LoF variants in a given gene is strongly correlated
with the length of the coding sequence or the number of exons
(all P < 1 × 10−67). However, the number of individuals who carry
a rare gene KO is not correlated with the length of the coding

Figure 1. Distributions of the number of NHLBI Exome Sequence Project (ESP) participants with predicted gene knockouts (KOs). We present distributions in African
Americans (A and B) and European Americans (C and D). We include all loss-of-function (LoF: nonsense, stop-loss, splice site, frameshift indel) variants in (A) and (C),
whereas only rare/low-frequency LoF variants (minor allele frequency <5%) are included in (B) and (D). Homo., gene KO due to homozygosity; Comp. het., gene KO due
to compound heterozygosity; Both, genes with homozygous and compound heterozygous LoF variants.
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sequence or the number of exons of the gene (all P > 0.2), except
for a weak correlation observed in ESP African Americans with
the length of the coding sequence (Pearson’s r = 0.066, P = 0.003).

To exclude the possibility that gene length may influence our re-
sults, we tested correlationswith association results from the ESP
and MHI Biobank combined analyses. With one exception

Figure 2. Schematic representation of the method to detect association between gene knockouts (KOs) and human quantitative variation. This example depicts a fictive
gene with three exons (GENE1) that contains several SNPs. Our analytical framework only considers loss-of-function (LoF) variants (shown in red). GENE1 KOs are
individuals who are either compound heterozygous of homozygous for LoF variants (individual 1 and 2). The histogram shows the distribution of a normalized
human quantitative trait. Our method tests whether individuals that are KOs for a given gene (red arrows) have on average more extreme phenotypes than the rest of
the individuals.

Figure 3. Quantile-quantile (QQ) plots of association results between predicted gene knockouts (KOs) and anthropometric traits in the (A–C) NHLBI Exome Sequence
Project (ESP) and (D–F) GIANT ExomeChip datasets. In these datasets, we only considered loss of function (LoF) variants (nonsense, stop-loss, splice site, frameshift
indels (ESP only)) with a minor allele frequency (MAF) <5%. We analyzed three anthropometric traits: (A) body mass index (BMI) (Nparticipants = 4475), (B) height
(Nparticipants = 4423) and (C) waist-to-hip ratio (WHR) (Nparticipants = 2973). We performed these analyses stratified by ethnicity, and then combined the European
American and African American results using meta-analysis methodology. We analyzed the same traits in the GIANT dataset: (D) BMI (Nparticipants = 103 838), (E) height
(Nparticipants = 102 775) and (F) WHR (Nparticipants = 62 355). Results are not corrected for the genomic inflation factor. The dash lines correspond to the 95% confidence
interval. λGC, genomic inflation factor; Ngene, number of genes with at least one participant that carries two LoF alleles.
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(among 12 correlation tests performed), we found no significant
correlations between the length of the coding sequence or the
number of exons and association P-values for BMI, height, and
WHR (all P > 0.25). In ESP African Americans, there was a weak
correlation between the length of the coding sequence and the
BMI P-values (Pearson’s r = 0.069, P = 0.002), but it was in the op-
posite direction fromour expectations (shorter genes have slight-
ly more significant P-values). Together, these analyses suggest
that our method to test association between gene KOs and
human quantitative traits is largely insensitive to gene length.

Gene KO identification and association testing using
exome array data

Recognizing that the main limitation of our analysis is sample
size, we contacted studies that are involved in the GIANT Consor-
tium.AlthoughWESorWGSdata are not readily available formost
of these studies, they all have genotyped their participants using
an exome array that targets 250 000—mostly coding—variants.
We reasoned that the large sample size offered by the GIANTCon-
sortium could compensate for the limited number of variants pre-
sent on the exome array.We recruited 22 studies, totaling >102 000
individuals (BMI and height available for all, WHR available for
>62 000 individuals). Each study ran themethod locally, stratifying
all analyses by ethnicity, and we then combined results using
meta-analysis methodology (22). The frequency of KO events
was similar in ESP and the GIANT studies. However, there were
more singletons (genes with a single KO individual) observed in
European-ancestry individuals from the GIANT studies because
of the very large sample size (Supplementary Material, Fig. S3).

We present the BMI, height, and WHR meta-analysis results
for the GIANT studies in Figure 3. As reported above for the
WES sequence datasets, and despite a sample size that is >10
times larger, we could not detect significant associations be-
tween gene KOs and quantitative anthropometric traits after ac-
counting for the number of tests performed (Table 3 and
Supplementary Material, Table S4). The most interesting finding
pertains to the association between height and inactivation of
GRHPH: autosomal recessive Mendelian mutations in this gene
cause primary hyperoxaluria type 2 [MIM 260000] (23). Primary
hyperoxaluria type 1 [MIM 259900], amore severe form of the dis-
ease caused by mutations in AGXT, is characterized by very se-
vere growth failure (24). However, the connection between
primary hyperoxaluria type 2 caused by recessive mutations in

GRHPH and growth in humans has not been as clearly documen-
ted, although there is one case report of a child with this disease
and short stature (25).

Table 2. Association of gene knockouts (KOs) with anthropometric traits in the Exome Sequence Project (ESP) and Montreal Heart Institute (MHI)
Biobank DNA sequencing datasets

Trait Gene ESP MHI Combined
Mean EA
(real units)

NKO

EA
Mean AA
(real units)

NKO

AA
P Mean (real units) NKO P Weighted

average
(real units)

P

BMI PKHD1L1 0.7 (+3.2 kg/m2) 11 0.5 (+2.3 kg/m2) 6 0.009 1.6 (+7.2 kg/m2) 3 0.009 0.8 (+3.6 kg/m2) 0.0002
PLIN4 2.7 (+12.2 kg/m2) 1 3.1 (+14.0 kg/m2) 1 5 × 10−5 −0.2 (−0.9 kg/m2) 2 0.67 1.4 (+6.3 kg/m2) 0.002

Height RMDN2 NA 0 −1.1 (−7.0 cm) 4 0.03 −1.6 (−10.2 cm) 2 0.02 −1.3 (−8.3 cm) 0.002
ASIC4 3.6 (23.0 cm) 1 1.5 (9.6 cm) 2 5 × 10−5 −0.4 (−2.6 cm) 2 0.56 1.2 (+7.7 cm) 0.002
SH2B2 −1.6 (−10.2 cm) 2 NA 0 0.02 −1.9 (−12.2 cm) 1 0.06 −1.7 (−10.9 cm) 0.003

WHR C1QTNF5 0.6 (+0.04) 1 1.8 (+0.13) 2 0.04 1.5 (+0.11) 2 0.03 1.4 (0.10) 0.003

We attempted to replicate gene KO associations from the ESP whole-exome DNA sequencing dataset in the MHI Biobank whole-genome DNA sequencing dataset. We
tested for replication genes with P < 0.05 and at least two KO individuals in the ESP dataset. We report genes with a combined P < 0.005. We provide the mean gene KO
effect size in standard deviation (SD) and metric units, assuming that 1 SD corresponds to 4.5 kg/m2, 6.4 cm, and 0.07 for BMI, height, and WHR respectively. NKO:
number of individuals that are KO for the given gene.
EA: European-ancestry; AA: African-ancestry.

Table 3. Top association results between anthropometric traits and
predicted gene knockouts (KOs) identified using ExomeChip data from
22 studies participating in the GIANT Consortium

Trait Gene NKO Nstudy Weighted
mean (SD)

P

BMI CYP20A1 100 15 −0.35 0.001
ME2 2 2 −1.90 0.002
KIAA1024 7 5 −0.75 0.002
TBC1D5 4 3 1.05 0.003
LRRC39 147 16 0.23 0.003
TAS1R1 191 6 0.15 0.004
LAMA3 9 2 −1.02 0.004
KIAA0391 3 2 −1.64 0.004
TAS2R60 2 2 −2.04 0.005

Height GRHPR 2 2 −2.28 0.0001
ABCB7 365 10 −0.12 0.0003
ZDHHC14 3 2 −2.01 0.0003
ZFPM1 21 3 −0.60 0.0008
DHX57 2 2 −2.04 0.0009
CD8A 2 2 2.35 0.001
CDC42BPA 4 2 1.70 0.001
NSUN4 13 3 −0.78 0.002
ARPC5L 6 2 −1.25 0.002
CCDC125 45 9 0.35 0.002
BOK 27 4 0.61 0.003
NSRP1 9 1 −1.00 0.003
TEX13A 2 1 2.00 0.004
RPGRIP1 10 4 −0.72 0.004
SCGN 6 5 −0.96 0.005

WHR C18orf56 7 1 1.39 0.0002
AARS2 3 2 −1.78 0.001
C18orf34 6 3 1.27 0.002
CCDC68 13 1 0.83 0.002
HRG 3 2 −1.52 0.004
SPTA1 2 2 1.86 0.004
SPTBN5 191 11 0.15 0.005

We only report genes with P < 0.005 and at least two KO individuals. Theweighted
mean corresponds to the average phenotype (in standard deviation units) of
individuals that are KO for this gene. NKO: number of individuals with a KO
gene; Nstudy: number of studies with at least one KO individual for a given gene.
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Prioritizing gene KOs using a candidate-gene approach

Wenext askedwhetherwewould increasepower todetect associa-
tions between geneKOand anthropometric traits by restricting our
analyses to strong candidate genes. We focused on subsets of
genes that are associated with any phenotypes in OMIM, or
genes that are intolerant to LoF mutations based on the Residual
Variation Intolerance Score (RVIS) or theprobabilityof being LoF In-
tolerant (pLI) score (20,26). We observed several genes that deviate
from the null when restricting our analyses to these candidate
genes, especially for the OMIM genes in the larger GIANT datasets
forBMI andWHR (Fig. 4).Wealso reasoned that theMouseGenome
Informatics (MGI) database might be a good source of candidate
genes for our human KO experiment. We retrieved the human
homologues of genes from 30 MGI phenotype categories, and
tested them against anthropometric traits (Supplementary Mater-
ial, Fig. S5). Again, we observed inflation of the KO association re-
sults when compared to the null distribution, suggesting that
some of these genes might influence anthropometric traits when
completely inactivated. The most noticeable result was the distri-
bution of test statistics in the GIANT BMI analysis for genes related
to taste and olfaction (Supplementary Material, Fig. S5). Genes re-
lated to this category were significantly enriched for genes with a
BMI P < 0.05 in GIANT (Fisher’s exact test, P = 0.008).

Discussion
We developed a simple statistical method to test the association
between predicted gene KOs and human quantitative traits. We
tested our method on three quantitative anthropometric traits
(BMI, height, andWHR) in largeDNAsequencing (ESPandMHI Bio-
bank, >6400 individuals) and genotyping (22 participating GIANT
studies, >102 000 individuals) datasets. Despite this large sample
size, we did not identify significant genetic associations with pre-
dicted gene KOs, although the association between PKHD1L1 and
BMI or GRHPH and height are interesting and should be tested
for replication. Within the limitations of our study design (sample
size, incomplete catalogue of LoF variants), our results suggest
that there are no predicted gene KOs with modest-to-large effect
size on anthropometric trait variation in the general population.
This conclusion is largely consistent with results from a recent
study of homozygous LoF variants in 1432 individuals (17).

Importantly, our approach and results can guide future gene
KO studies in humans. First, our method assumes that all LoF al-
leles for a given gene will shift the phenotypic mean in the same
direction. Although it is a sensitive approach in this first large-
scale gene KO experiment for quantitative traits, alternative
methods could explore effect on phenotypic variance. Second,
in order to maximize our sample size, we combined datasets

Figure 4. Quantile-quantile (QQ) plots of association results between predicted gene knockouts (KOs) in candidate-genes and anthropometric traits. We restricted these
analyses toOMIMdisease-causing genes (green), geneswith Residual Variation Intolerance Score (RVIS) score <15% of RVIS scores for all genes in the humangenome (red),
or genes with a probability of being loss-of-function intolerant (pLI) score >0.9 (blue). We report results for three anthropometric traits in the NHLBI Exome Sequence
Project (ESP): (A) body mass index (BMI) (Nparticipants = 4475), (B) height (Nparticipants = 4423) and (C) waist-to-hip ratio (WHR) (Nparticipants = 2973). We also report results
for the same traits in the GIANT ExomeChip datasets: (D) BMI (Nparticipants = 103 838), (E) height (Nparticipants = 102 775), and (F) WHR (Nparticipants = 62 355). Results are not
corrected for the genomic inflation factor. The dash lines correspond to the 95% confidence interval. λGC, genomic inflation factor;Ngene, number of geneswith at least one
participant that carries two LoF alleles.

Human Molecular Genetics | 7

 at U
niversite de M

ontreal on M
ay 24, 2016

http://hm
g.oxfordjournals.org/

D
ow

nloaded from
 

http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw055/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw055/-/DC1
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw055/-/DC1
http://hmg.oxfordjournals.org/


from different technologies (WES, WGS, exome array). Although
we accounted for this technical heterogeneity—geneKO statistics
were similar across datasets—this approach could have intro-
duced unanticipated biases. Ideally, high coverage WGS data
would be available for gene KO studies. Third, haplotype phasing
of DNA sequence data from unrelated individuals (ESP and MHI
Biobank), and the lack of phase information for the GIANT Exo-
meChip studies, has limited our ability to identify compound
heterozygous individuals. This could impact our results as nearly
20%of all gene KOs identified in this studywere due to compound
heterozygosity.Wenote, however, that excluding compoundhet-
erozygotes from the ESP analyses had very limited impact on our
results (Supplementary Material, Fig. S6). Fourth, we only consid-
ered nonsense, splice site, stop-loss and frameshift indels as LoF
variants to identify gene KOs. Some of these variants are likely
neutral: for instance, genes are more tolerant to non-synonym-
ous variants at the 3′ end of a gene, and nearby variants can res-
cue the effect of LoF alleles (12). Furthermore, we excluded
missense variants from our analyses, although functional char-
acterization can lead to the identification of missense alleles
with strong phenotypic effect on human complex phenotypes
(27,28).

Themain limiting factors of geneKO studies inhumans are the
sample size and the depth of genetic information available. We
have shown that even when the sample size is very large, most
gene KOs are identified in single individuals (Supplementary Ma-
terial, Fig. S3). To be successful,wewill need todevelop tools topri-
oritize genes or increase the number of gene KOs. One possibility
maybe to consideronly genes expressed in a tissue that is relevant
for thephenotypeof interest (e.g. genes expressed ingrowthplates
for height). Another promising solutionmay be to consider KOs in
biological pathways instead of single genes as the testing unit. For
instance, a researcher interested in blood lipid genetics could pool
together all individuals that carry a gene KO in anyof the enzymes
or transporters implicated in lipid metabolism.We illustrated this
candidate-gene approach by prioritizing OMIM disease-causing
genes, genes intolerant to LoFmutations, and genes with relevant
mouse KO phenotypes. In particular for the BMI analysis, the en-
richment of genes with mouse homologues that disrupt taste or
olfaction when inactivated is of interest (Supplementary Material,
Fig. S5). Reverse genetic strategies—finding a function to a gene by
first disrupting it—have been very successful inmodel organisms.
Despite early challenges, the large-scale identification of LoF var-
iants and characterization of gene KOs promise to also yield inter-
esting insights into human biology.

Materials and Methods
Ethics statement

This project was approved by the Ethics Committee of the
Montreal Heart Institute (#11-1333, #2013-297, #2013-1438).

NHLBI Exome Sequence Project

We conducted our initial analysis on the final whole-exome ESP
dataset, which is described elsewhere (9). This datasetwas gener-
ated from high coverage WES (median depth >100×) (9). All study
participants in each of the component studies provided written
informed consent for the use of their DNA in studies aimed at
identifying genetic risk variants for disease and for broad data
sharing. Institutional certification was obtained for each sample
to allow deposition of phenotype and genotype data in dbGaP
and BAM files in the short-read archive.We excluded individuals

based on sexmismatch between clinical database and genotype-
inferred sex (N = 13), high homozygosity (N = 1), high genotyping
missing rate (>10%) (N = 1), if they appear as population outliers in
principal component analyses (N = 30), low concordance to gen-
ome-wide association study data (N = 4), or unresolved partici-
pant identifiers (N = 4). Moreover, we randomly excluded one
member of each pair of duplicates (N = 16), and of first- and se-
cond-degree relatives (N = 108). We also removed individuals
with chronic obstructive pulmonary disease or asthma, as
these conditions could influence anthropometric traits (N = 688).
Finally, we removed participants from the CARDIA (N = 201) and
MESA (N = 406) studies, as requested by investigators from these
studies. We kept individuals aged between 21 and 80 years old,
height between 125 and 240 cm, BMI < 75 kg/m2, and WHR < 1.5.
In total, we analyzed anthropometric traits in 1726 African Amer-
icans and 2772 European Americans (Supplementary Material,
Table S1).

Variant quality-control and annotation

We phased variants in the ESP dataset using Beagle 4.0 and the
default parameters (19). We define LoF variants as variants that
create or remove stop codons (nonsense and stop-loss) that dis-
rupt essential splice sites (two intronic bases at exon-intron
boundaries), or that change the reading frame (frameshift
indel). We annotated single-base pair variants using in-house
custom scripts and build 37.1 of the human genome reference se-
quence. We annotated frameshift indels using SeattleSeq (hg19,
v.9.03, http://snp.gs.washington.edu/SeattleSeqAnnotation138/).
We included in our analyses only frameshift indel variants that
fall within validated RefSeq genes (release 69). After filtering
out variants with a call rate <95% or a Hardy–Weinberg P < 1 ×
10−6, we retained in our analyses 18 137 and 21 935 LoF variants
in African- and European-ancestry individuals, respectively
(Supplementary Material, Table S1). For comparison, we also an-
notated ESP variants using Ensembl’s Variant Effect Predictor
(VEP) module and basic transcripts from GENCODE. We obtained
very similar results (Supplementary Material, Fig. S1).

Replication cohorts with WGS or WES data available

We used low-pass WGS data (mean coverage 5.7×) from 2002
French-Canadian participants recruited by the MHI Biobank.
Genotypes were imputed and phased using Beagle 4.0 using the
default parameters (19). Individuals were removed due to low
or high inbreeding coefficient (N = 4). Variants with Hardy–Wein-
berg P < 1 × 10−8 were excluded. In total, 1976 MHI Biobank parti-
cipants with anthropometric traits availablewere included in the
replication analyses (Supplementary Material, Table S1).

GIANT Consortium ExomeChip datasets

We analyzed Illumina ExomeChip genotype data from 22 studies
that aremembers of the GIANTConsortium (Supplementary Ma-
terial, Table S1). In total, 103 838, 102 775, and 62 355 individuals
were included in the BMI, height and BMI-adjusted WHR ana-
lyses, respectively. Individuals were from European- (N = 90 927;
19 studies), African- (N = 7576; 2 studies), and Hispanic-ancestry
(N = 5335; 1 study). To increase the number of LoF variants avail-
able on the ExomeChip, we broaden our definition of splice-site
variants to include variants located two base pairs on either
side of exon-intron boundaries. This is the splice-site definition
implemented by dbNSFP (29) and used by GIANT across the Con-
sortium’s ExomeChip effort. Using the most severe annotation
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from ENSEMBL’s VEP tool, we found that 17.8% (797/4483) of these
splice-site variants disrupt a canonical splice-site, 46.7% (2094/
4483) are missense variants, and 31.6% (1419/4483) affect a nu-
cleotide around the splice-site (1–3 bases within exon or 3–8
bases within intron). Phasing information was not available for
the GIANT exome array data. Because we focused on rare var-
iants, we assumed that when two rare LoF variants were ob-
served in the same gene in the same individual, they were
inherited in trans to create a compound heterozygous gene KO.

Statistical analyses

We developed a flexible method to determine if the complete in-
activation of genes by LoF variants is associated with human
quantitative traits (Fig. 2). For each gene, our method searches
for individuals that are either homozygotes or compound hetero-
zygotes for LoF variants; we refer to these individuals as predicted
KOs. For X-linked markers that fall outside of the pseudoautoso-
mal regions, we consider predicted gene KOs in men if they
carry a single LoF variant. For compound heterozygosity, we use
phase information to distinguish LoF variants that segregate on
the same haplotype (in cis) or on different haplotypes (in trans).
When phasing information is not available (e.g. GIANT Exome-
Chipdata),we assume that rare LoF variants segregate ondifferent
haplotypes. Themethod then calculates for each gene the pheno-
typic mean in predicted KO individuals. Finally, it computes stat-
istical significance using phenotype permutations, as follows:

Pleft ¼
Pn

i¼1 ""mi#m

n
; Pright ¼

Pn
i¼1 ""mi$m

n

Pfinal ¼2 ×minimum ðPleft; PrightÞ;

where "" is the indicator function, m is the observed mean pheno-
type in predicted KO individuals,mi is the ith permutedmean, n is
the number of permutations, Pleft and Pright are the left- and right-
tail P-values, and Pfinal is the reported two-tailed P-value. Using si-
mulated null phenotypes and the ESP dataset, we showed that the
test is well-calibrated (Supplementary Material, Fig. S4). This
method assumes that gene inactivation results in the same
phenotypic effect (increase or decrease trait value) in all predicted
KO individuals for a given gene. The current implementation of
ourmethod also currently assumes that tested individuals are un-
related and that the phenotypic distributions are symmetrical. It is
compatible with standard genotype file formats (e.g. PLINK, vcf).
The scripts to run our method are publicly available at: http://
www.mhi-humangenetics.org/en/resources.

Association of rare predicted gene KOs with
anthropometric traits

We analyzed BMI, adult height and BMI-adjustedWHR. We strati-
fied all our analyses by ethnic group, and we only considered rare
or low-frequency LoF variants withMAF < 5%.We used 10 000 per-
mutations to assess statistical significance. For genes with an em-
pirical P < 2 × 10−4 (i.e. permuted means were never higher (or
lower) than the observed mean among 10 000 permutations), we
re-ran the analysis using 100 000 permutations: only two genes
fell in that category (BRPF1 Pheight = 1.8 × 10−4; SPZ1 PWHR = 2.2 ×
10−4). For ESP samples, we corrected anthropometric traits for
sex, age, ESP phenotype groups, exon capture reagents and the
first three principal components, as recommended by the ESP in-
vestigators. We then applied inverse normal transformation on
the residuals from the previous correction. For the MHI Biobank,
and the GIANT studies, each anthropometric trait was corrected

for sex, age, age-squared and the first 10 principal components,
and we normalized the resulting residuals using inverse normal
transformation. Taking into account the direction of the effect,
we combined results across studies using a weighted Z-score
meta-analysis method implemented in the software METAL,
where the weight is the sample size of the corresponding study
(22). To estimate statistical power of our approach, we modeled
the effect of a recessive LoF variant on a normally distributed
quantitative trait, as previously described (30). This is a simplistic
model as we ignore the presence of additional LoF variants in the
same gene, which are considered in ourmethod because they can
lead to additional individuals that have a predicted gene KO. We
assume that the variant has aMAF = 5%, explains 1%of the genetic
variance, and used a sample size of N = 4500 (corresponding to
ESP), α = 2 × 10−5 (Bonferroni correction for the number of genes
with KOs), and 5000 simulations to perform power calculations.
Under this scenario, our gene KO approach would have 95%
power to detect the association. Alternatively, testing the associ-
ation while assuming that the variant has an additive effect
would result in only 3% power. Using the same assumptions, we
estimated 64 and 1% power for a variant that explains 0.5% of
the variance when tested using our gene KO methodology or a
simple additive model, respectively.

Candidate-gene enrichment analyses

Weexploredwhether prioritizing geneKOs into different categor-
ies could increase the chance to reveal an association. First, we
investigated whether the gene was an OMIM disease-causing
gene, as defined elsewhere (26). Next, we considered whether
the genes were LoF intolerant by either having a Residual Vari-
ation Intolerance Score (RVIS) <15% of the RVIS scores for all
genes in the human genome (release 0.3) or a probability of
being LoF intolerant (pLI) score >0.9 (20,26).We looked for enrich-
ment byoverlapping theQQ-plots of genes belonging to these dif-
ferent categories separately on the QQ-plot containing all genes.
We also created subsets of genes based on 30 phenotype categor-
ies from the Mouse Genome Informatics (MGI) Database (31). We
tested the enrichment using Fisher’s exact test.

Supplementary Material
Supplementary Material is available at HMG online.

Acknowledgements
We thank all participants involved in this project, and Ekat Kriti-
kou for comments on the manuscript. P.B.M. and M.C. acknow-
ledge that this work forms part of the research program of the
NIHRBarts Cardiovascular Biomedical ResearchUnit.M.C. is a se-
nior National Institute for Health Research Investigator. Sequen-
cing of the MHI Biobank samples was performed at the McGill
University and Génome Québec Innovation Centre.

Conflict of Interest statement. None declared.

Funding
The authors wish to acknowledge the support of the National
Heart, Lung, and Blood Institute (NHLBI) and the contributions
of the research institutions, study investigators, field staff and
study participants in creating this resource for biomedical re-
search. S.L. is funded by a Canadian Institutes of Health Research
Banting doctoral scholarship. G.L. is funded by Genome Canada

Human Molecular Genetics | 9

 at U
niversite de M

ontreal on M
ay 24, 2016

http://hm
g.oxfordjournals.org/

D
ow

nloaded from
 

http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw055/-/DC1
http://www.mhi-humangenetics.org/en/resources
http://www.mhi-humangenetics.org/en/resources
http://www.mhi-humangenetics.org/en/resources
http://www.mhi-humangenetics.org/en/resources
http://www.mhi-humangenetics.org/en/resources
http://www.mhi-humangenetics.org/en/resources
http://hmg.oxfordjournals.org/lookup/suppl/doi:10.1093/hmg/ddw055/-/DC1
http://hmg.oxfordjournals.org/


and Génome Québec; the Canada Research Chairs program; and
the Montreal Heart Institute Foundation. C.M.L. is supported by
Wellcome Trust (grant numbers 086596/Z/08/Z, 086596/Z/08/A);
and the Li Ka Shing Foundation. N.S. is funded by National Insti-
tutes of Health (grant numbers HL088456, HL111089, HL116747).
The Mount Sinai BioMe Biobank Program is supported by the An-
drea and Charles Bronfman Philanthropies. GO ESP is supported
by NHLBI (RC2 HL-103010 to HeartGO, RC2 HL-102923 to LungGO,
RC2 HL-102924 to WHISP). The ESP exome sequencing was
performed through NHLBI (RC2 HL-102925 to BroadGO, RC2 HL-
102926 to SeattleGO). EGCUT work was supported through the
Estonian Genome Center of University of Tartu by the Targeted
Financing from the Estonian Ministry of Science and Education
(grant number SF0180142s08); the Development Fund of the Uni-
versity of Tartu (grant number SP1GVARENG); the European Re-
gional Development Fund to the Centre of Excellence in
Genomics (EXCEGEN) [grant number 3.2.0304.11-0312]; and
through FP7 (grant number 313010). EGCUT were further sup-
ported by the US National Institute of Health (grant number
R01DK075787). A.K.M. was supported by an American Diabetes
Association Mentor-Based Postdoctoral Fellowship (#7-12-MN-
02). The BioVU dataset used in the analyses described were ob-
tained from Vanderbilt University Medical Centers BioVU which
is supported by institutional funding and by the Vanderbilt CTSA
grant ULTR000445 from NCATS/NIH. Genome-wide genotyping
was funded by NIH grants RC2GM092618 from NIGMS/OD and
U01HG004603 from NHGRI/NIGMS. Funding to pay the Open Ac-
cess publication charges for this article was provided by a block
grant from Research Councils UK to the University of Cambridge.

References
1. Alkuraya, F.S. (2015) Human knockout research: newhorizons

and opportunities. Trends Genet., 31, 108–115.
2. Kamb, A., Harper, S. and Stefansson, K. (2013) Human genet-

ics as a foundation for innovative drug development.Nat. Bio-
technol., 31, 975–978.

3. Antonarakis, S.E. and Beckmann, J.S. (2006) Mendelian disor-
ders deserve more attention. Nat. Rev. Genet., 7, 277–282.

4. Amselem, S., Duquesnoy, P., Attree, O., Novelli, G., Bousnina,
S., Postel-Vinay,M.C. and Goossens,M. (1989) Laron dwarfism
and mutations of the growth hormone-receptor gene.
N. Engl. J. Med., 321, 989–995.

5. Clement, K., Vaisse, C., Lahlou, N., Cabrol, S., Pelloux, V., Cas-
suto, D., Gourmelen, M., Dina, C., Chambaz, J., Lacorte, J.M.
et al. (1998) A mutation in the human leptin receptor gene
causes obesity and pituitary dysfunction.Nature, 392, 398–401.

6. Jackson, R.S., Creemers, J.W., Farooqi, I.S., Raffin-Sanson, M.
L., Varro, A., Dockray, G.J., Holst, J.J., Brubaker, P.L., Corvol,
P., Polonsky, K.S. et al. (2003) Small-intestinal dysfunction ac-
companies the complex endocrinopathy of human propro-
tein convertase 1 deficiency. J. Clin. Invest., 112, 1550–1560.

7. 1000 Genomes Project Consortium. (2010) A map of human
genome variation from population-scale sequencing. Nature,
467, 1061–1073.

8. 1000 Genomes Project Consortium. (2012) An integrated map
of genetic variation from 1,092 human genomes. Nature, 491,
56–65.

9. Fu, W., O’Connor, T.D., Jun, G., Kang, H.M., Abecasis, G., Leal,
S.M., Gabriel, S., Rieder, M.J., Altshuler, D., Shendure, J. et al.
(2013) Analysis of 6,515 exomes reveals the recent origin of
most human protein-coding variants. Nature, 493, 216–220.

10. Tennessen, J.A., Bigham, A.W., O’Connor, T.D., Fu, W., Kenny,
E.E., Gravel, S., McGee, S., Do, R., Liu, X., Jun, G. et al. (2012)

Evolution and functional impact of rare coding variation
from deep sequencing of human exomes. Science, 337, 64–69.

11. Alsalem, A.B., Halees, A.S., Anazi, S., Alshamekh, S. and Al-
kuraya, F.S. (2013) Autozygome sequencing expands the hori-
zon of human knockout research and provides novel insights
into human phenotypic variation. PLoS Genet., 9, e1004030.

12. MacArthur, D.G., Balasubramanian, S., Frankish, A., Huang, N.,
Morris, J., Walter, K., Jostins, L., Habegger, L., Pickrell, J.K.,
Montgomery, S.B. et al. (2012) A systematic survey of loss-of-
function variants in human protein-coding genes. Science,
335, 823–828.

13. Gorlov, I.P., Gorlova, O.Y., Sunyaev, S.R., Spitz, M.R. andAmos,
C.I. (2008) Shifting paradigm of association studies: value of
rare single-nucleotide polymorphisms. Am. J. Hum. Genet.,
82, 100–112.

14. Sulem, P., Helgason, H., Oddson, A., Stefansson, H., Gudjons-
son, S.A., Zink, F., Hjartarson, E., Sigurdsson, G.T., Jonasdottir,
A., Jonasdottir, A. et al. (2015) Identification of a large set of
rare complete human knockouts. Nat. Genet., 47, 448–452.

15. Li, A.H., Morrison, A.C., Kovar, C., Cupples, L.A., Brody, J.A.,
Polfus, L.M., Yu, B., Metcalf, G., Muzny, D., Veeraraghavan,
N. et al. (2015) Analysis of loss-of-function variants and 20
risk factor phenotypes in 8,554 individuals identifies loci in-
fluencing chronic disease. Nat. Genet., 47, 640–642.

16. Lim, E.T., Wurtz, P., Havulinna, A.S., Palta, P., Tukiainen, T.,
Rehnstrom, K., Esko, T., Magi, R., Inouye, M., Lappalainen, T.
et al. (2014) Distribution and medical impact of loss-of-func-
tion variants in the Finnish founder population. PLoS Genet.,
10, e1004494.

17. Kaiser, V.B., Svinti, V., Prendergast, J.G., Chau, Y.Y., Campbell,
A., Patarcic, I., Barroso, I., Joshi, P.K., Hastie, N.D., Miljkovic, A.
et al. (2015) Homozygous loss-of-function variants in Euro-
pean cosmopolitan and isolate populations. Hum. Mol.
Genet., 24, 5464–5474.

18. Lim, E.T., Raychaudhuri, S., Sanders, S.J., Stevens, C., Sabo, A.,
MacArthur, D.G., Neale, B.M., Kirby, A., Ruderfer, D.M., Fro-
mer, M. et al. (2013) Rare complete knockouts in humans:
population distribution and significant role in autism spec-
trum disorders. Neuron, 77, 235–242.

19. Browning, S.R. and Browning, B.L. (2007) Rapid and accurate
haplotype phasing and missing-data inference for whole-
genome association studies by use of localized haplotype
clustering. Am. J. Hum. Genet., 81, 1084–1097.

20. Lek, M., Karczewski, K., Minikel, E., Samocha, K., Banks, E.,
Fennell, T., O’Donnell-Luria, A., Ware, J., Hill, A., Cummings,
B. et al. (2015) Analysis of protein-coding genetic variation
in 60,706 humans. bioRxiv, doi:org/10.1101/030338.

21. Hogan, M.C., Griffin, M.D., Rossetti, S., Torres, V.E., Ward, C.J.
and Harris, P.C. (2003) PKHDL1, a homolog of the autosomal
recessive polycystic kidney disease gene, encodes a receptor
with inducible T lymphocyte expression.Hum.Mol. Genet., 12,
685–698.

22. Willer, C.J., Li, Y. and Abecasis, G.R. (2010) METAL: fast and ef-
ficient meta-analysis of genomewide association scans. Bio-
informatics, 26, 2190–2191.

23. Cramer, S.D., Ferree, P.M., Lin, K.,Milliner, D.S. andHolmes, R.P.
(1999) The gene encoding hydroxypyruvate reductase (GRHPR)
ismutated inpatientswithprimaryhyperoxaluria type II.Hum.
Mol. Genet., 8, 2063–2069.

24. Nissel, R., Latta, K., Gagnadoux, M.F., Kelly, D., Hulton, S.,
Kemper, M.J., Ruder, H., Soderdahl, G., Otte, J.B., Cochat, P.
et al. (2006) Body growth after combined liver-kidney trans-
plantation in children with primary hyperoxaluria type 1.
Transplantation, 82, 48–54.

10 | Human Molecular Genetics

 at U
niversite de M

ontreal on M
ay 24, 2016

http://hm
g.oxfordjournals.org/

D
ow

nloaded from
 

http://hmg.oxfordjournals.org/


25. Dent, C.E. and Stamp, T.C. (1970) Treatment of primary hyper-
oxaluria. Arch. Dis. Child., 45, 735–745.

26. Petrovski, S., Wang, Q., Heinzen, E.L., Allen, A.S. and Gold-
stein, D.B. (2013) Genic intolerance to functional variation
and the interpretation of personal genomes. PLoS Genet., 9,
e1003709.

27. Majithia, A.R., Flannick, J., Shahinian, P., Guo, M., Bray, M.A.,
Fontanillas, P., Gabriel, S.B., Go, T.D.C., Project, N.J.F.A.S., Con-
sortium, S.T.D. et al. (2014) Rare variants in PPARG with de-
creased activity in adipocyte differentiation are associated
with increased risk of type 2 diabetes. Proc. Natl Acad. Sci.
USA, 111, 13127–13132.

28. Thormaehlen, A.S., Schuberth, C., Won, H.H., Blattmann, P.,
Joggerst-Thomalla, B., Theiss, S., Asselta, R., Duga, S., Merlini,

P.A., Ardissino, D. et al. (2015) Systematic cell-based pheno-
typing of missense alleles empowers rare variant association
studies: a case for LDLR and myocardial infarction. PLoS
Genet., 11, e1004855.

29. Liu, X., Jian, X. and Boerwinkle, E. (2013) dbNSFP v2.0: a data-
base of human non-synonymous SNVs and their functional
predictions and annotations. Hum. Mutat., 34, E2393–E2402.

30. Lettre, G., Lange, C. and Hirschhorn, J.N. (2007) Genetic model
testing and statistical power in population-based association
studies of quantitative traits. Genet. Epidemiol., 31, 358–362.

31. Eppig, J.T., Blake, J.A., Bult, C.J., Kadin, J.A. and Richardson, J.E.
and Mouse Genome Database Group. (2015) The Mouse Gen-
ome Database (MGD): facilitating mouse as a model for
human biology and disease. Nucleic Acids Res., 43, D726–D736.

Human Molecular Genetics | 11

 at U
niversite de M

ontreal on M
ay 24, 2016

http://hm
g.oxfordjournals.org/

D
ow

nloaded from
 

http://hmg.oxfordjournals.org/

